A Spatial Mapping Algorithm with Applications in Deep Learning-Based Structure Classification
نویسندگان
چکیده
Convolutional Neural Network (CNN)-based machine learning systems have made breakthroughs in feature extraction and image recognition tasks in two dimensions (2D). Although there is significant ongoing work to apply CNN technology to domains involving complex 3D data, the success of such efforts has been constrained, in part, by limitations in data representation techniques. Most current approaches rely upon low-resolution 3D models, strategic limitation of scope in the 3D space, or the application of lossy projection techniques to allow for the use of 2D CNNs. To address this issue, we present a mapping algorithm that converts 3D structures to 2D and 1D data grids by mapping a traversal of a 3D space-filling curve to the traversal of corresponding 2D and 1D curves. We explore the performance of 2D and 1D CNNs trained on data encoded with our method versus comparable volumetric CNNs operating upon raw 3D data from a popular benchmarking dataset. Our experiments demonstrate that both 2D and 1D representations of 3D data generated via our method preserve a significant proportion of the 3D data’s features in forms learnable by CNNs. Furthermore, we demonstrate that our method of encoding 3D data into lower-dimensional representations allows for decreased CNN training time cost, increased original 3D model rendering resolutions, and supports increased numbers of data channels when compared to purely volumetric approaches. This demonstration is accomplished in the context of a structural biology classification task wherein we train 3D, 2D, and 1D CNNs on examples of two homologous branches within the Ras protein family. The essential contribution of this paper is the introduction of a dimensionality-reduction method that may ease the application of powerful deep learning tools to domains characterized by complex structural data.
منابع مشابه
A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.02532 شماره
صفحات -
تاریخ انتشار 2018